Chapter 8

Chapter 8

A Genetic Programming Tutorial

John R. Koza' and Riccardo Poli?
'sanford University, Sanford, California
2Department of Computer Science, University of Essex, UK

Abstract: Genetic programming is a technique to automatically discover computer
programs using principles of Darwinian evolution. This chapter introduces the
basics of genetic programming. To make the material more suitable for
beginners, these areillustrated with an extensive example. In addition, the
chapter touches upon some of the more advanced variants of genetic
programming aswell asiits theoretical foundations. Numerous pointersto
further reading, software tools and Web sites are also provided.

K ey words: Genetic programming, genetic algorithms, human-competitive machine
intelligence, machine learning, schematheory

1. INTRODUCTION

The goal of getting computers to automatically solve problems is centra
to artificia intelligence, machine learning, and the broad area encompassed
by what Turing called “machineintelligence’ (Turing 1948, 1950).

In his 1983 talk entitled “Al: Where It Has Been and Where It |Is Going,
machi ne learning pioneer Arthur Samuel stated the main goal of the fields of
machi ne learning and artificia intelligence:

“[T]heam]ig] ... to get machinesto exhibit
behavior, which if done by humans, would be
assumed to involve the use of intelligence.”

Genetic programming is a systematic method for getting computers to
automaticaly solve a problem starting from a high-level statement of what
needs to be done. Genetic programming is a domain-independent method
that gendicaly breeds a population of computer programs to solve a
problem. Specifically, genetic programming iterativdy transforms a
population of computer programs into a new generation of programs by

Chapter 8

applying analogs of naturally occurring genetic operations. This process is
illustrated in Figure 1.

" P Solution
Generare Population Run Programs and PRy
& - I
ff Random Programs &Evam ate Their Quality :‘“‘.:;Z“E‘éii

l B u

Breed Fitter Progmms]

L

Figure 1. Mainloop of genetic programming

The geneic operations include crossover (sexual recombination),
mutation, reproduction, gene duplication, and gene deetion. Anaogs of
developmental processes are sometimes used to transform an embryo into a
fully devdoped structure. Genetic programming is an extension of the
genetic algorithm (Holland 1975) in which the structures in the population
are not fixed-length character strings that encode candidate solutions to a
problem, but programs that, when executed, are the candidate solutions to
the problem.

Programs are expressed in genetic programming as syntax trees rather
than as lines of code For example, the dmple expression
max(X*x, x+3*y) is represented as shown in Figure 2. The tree includes
nodes (which we will adso cdl point) and links. The nodes indicate the
instructions to execute. Thelinks indicate the arguments for each instruction.
In the following the internal nodes in a tree will be caled functions, while
thetree' s leaves will be caled terminals.

3 y

Figure 2. Basic tree-like program representation used in genetic programming

Chapter 8

Component Component Component
1 2 N

Figure 3. Multi-tree program representation

In more advanced forms of genetic programming, programs can be
composed of multiple components (e.g., subroutines). In this case the
representation used in genetic programming is a set of trees (one for each
component) grouped together under a special node called root, as illustrated
in Figure 3. We will cal these (sub)trees branches. The number and type of
the branches in a program, together with certain other features of the
structure of the branches, form the ar chitecture of the program.

Genetic programming trees and their corresponding expressions can
equivalently be represented in prefix notation (e.g., as Lisp S-expressions).
In prefix notation, functions aways precede their arguments. For example,
max(x*x, x+3*y) becomes (max (* x xX)(+ x (* 3 y))). In
this notation, it is easy to see the correspondence between expressions and
their syntax trees. Simple recursive procedures can convert prefix-notation
expressions into infix-notation expressions and vice versa. Therefore, in the
following, we will use trees and their corresponding prefix-notation
expressions interchangeabl y.

2. PREPARATORY STEPSOF GENETIC
PROGRAMMING

Genetic programming starts from a high-levd statement of the
requirements of a problem and attempts to produce a computer program that
solves the problem.

Chapter 8

The human user communi cates the high-levd statement of the problem to
the genetic programming agorithm by performing certain well-defined
preparatory steps.

The five mgor preparatory steps for the basic version of genetic
programming require the human user to specify
1. the set of terminals (e.g., the independent variables of the problem, zero-

argument functions, and random constants) for each branch of the to-be-

evolved program,

2. the set of primitive functions for each branch of the to-be-evolved
program,

3. thefitness measure (for explicitly or implicitly measuring the fitness of
individuals in the population),

4, certain parameters for controlling the run, and

5. the terminati on criterion and method for designating the result of therun.

The first two preparatory steps specify the ingredients that are available
to create the computer programs. A run of genetic programming is a
competitive search among a diverse population of programs composed of the
available functions and terminals.

The identification of the function set and terminal set for a particular
problem (or category of problems) is usualy a straightforward process. For
some problems, the function s&¢ may consist of merely the arithmetic
functions of addition, subtraction, multiplication, and division as well as a
conditional branching operator. The termina set may consist of the
program’s externa inputs (independent variables) and numerical constants.

For many other problems, the ingredients include specialized functions
and terminals. For example, if the goa is to get genetic programming to
automaticaly program a robot to mop the entire floor of an obstacle-laden
room, the human user must tel genetic programming what the robot is
capable of doing. For example, the robot may be capable of executing
functions such as moving, turning, and swishing the mop.

If the goal is the automatic creation of a controller, the function set may
consist of integrators, differentiators, leads, lags, gains, adders, subtractors,
and the like and the termina set may consist of signals such as the reference
signal and plant output.

If the god is the automatic synthesis of an analog dectrical circuit, the
function set may enable genetic programming to construct circuits from
components such as transistors, capacitors, and resistors. Once the human
user has identified the primitive ingredients for a problem of circuit
synthesis, the same function set can be used to automatically synthesize an
amplifier, computational circuit, active filter, voltage reference drcuit, or
any other circuit composed of these ingredients.

Chapter 8

The third preparatory step concerns the fitness measure for the problem.
The fitness measure specifies what needs to be done. The fitness measure is
the primary mechanism for communicating the high-level statement of the
problem’s requirements to the genetic programming system. For example, if
the goa is to get genetic programming to automaticaly synthesize an
amplifier, the fitness function is the mechanism for teling genetic
programming to synthesize a circuit that amplifies an incoming signd (as
opposed to, say, a circuit that suppresses the low frequencies of an incoming
signal or that computes the square root of theincoming signal). The first two
preparatory steps define the search space whereas the fitness measure
implicitly specifies the search’s desired god .

The fourth and fifth preparatory steps are administrative. The fourth
preparatory step entails specifying the control parameters for the run. The
most important control parameter is the populaion size. Other control
parameters include the probabilities of performing the genetic operations, the
maxi mum size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination criterion
may include a maximum number of generations to be run as well as a
probl em-specific success predicate. The single best-so-far individud is then
harvested and designated as the result of therun.

3. EXECUTIONAL STEPSOF GENETIC
PROGRAMMING

After the user has performed the preparatory steps for a problem, the run
of genetic programming can be launched. Once the run is launched, a series
of well-defined, problem-independent stepsis executed.

Genetic programming typically starts with a population of randomly
generated computer programs composed of the avalable programmatic
ingredients (as provided by the human user in the first and second
preparatory steps).

Genetic programming iterativdy transforms a population of computer
programs into a new generation of the population by applying andogs of
naturally occurring genetic operations. These operations are applied to
individual(s) selected from the population. The individuas are
probabilisticaly selected to participate in the genetic operations based on
their fithess (as measured by the fithess measure provided by the human user
in the third preparatory step). The iterative transformation of the population
is executed inside the main generationd loop of the run of genetic
programming.

Chapter 8

The executional steps of genetic programming are as follows:

1. Randomly create aninitia population (generation 0) of individual

computer programs composed of the available functions and terminals.

2. lteratively perform the foll owing sub-steps (caled a generation) on the

population until the termination criterion is satisfied:
a) Execute each program in the population and ascertain its fitness

(explicitly or implicitly) using the problem’s fitness measure.

b) Sdect one or two individual program(s) from the popul ation with a
probability based on fitness (with resd ection all owed) to participate

in the genetic operationsin (c).

¢) Create new individua program(s) for the population by applying the
following genetic operations with specified probabilities:

— Reproduction: Copy the sdected individual program to the new
population.

— Crossover: Create new offspring program(s) for the new
population by recombining randomly chosen parts from two
sdlected programs.

— Mutation:; Creete one new offspring program for the new
population by randomly mutating arandomly chosen part of one
sdlected program.

— Architecture-altering operations: Choaose an architecture-
altering operation from the avail able repertaire of such operations
and create one new offspring program for the new population by
applying the chosen architecture-atering operation to one sdected
program.

3. After thetermination criterion is satisfied, the single best program in the
population produced during the run (the best-so-far individual) is
harvested and designated as the result of therun. If the run is successful,
the result may be a sol ution (or approxi mate solution) to the problem.

Figure 4 is a flowchart of genetic programming showing the genetic
operations of crossover, reproduction, and mutation as wel as the
architecture-dtering operations. This flowchart shows a two-offspring
version of the crossover operation.

Chapter 8

End
Yes

— No
Run := >| — Create Initial Random Run = N? Run :=Run + 1
un:=0 Gen :=0 |’ Population for Run C |

Yes Designate
—>

Termination Criterion
Result for Run|

Satisfied for Run?
v No
—>| Apply Fitness Measure to Individual in the Population |
N GeMDe]i=1+1]
\ T
i=0 Yes
[_ _ .
[Gen = Gen+ 1 |4 =M e T =i+ 1 [e¢————
No

(Select Genetic Operatio@

P, | Select One Individual| ->|Pe rform Reproductio 4 > Copy into New [—»

| Based on Fitness Population
B [Select Two Individuals Perform Insert Offspring ‘
g § i =i+ 1
Ll Based on Fitness g Crossover g Into NPTW _>
Population

By | Select One Individual _>| Perform Mutation |_, Insert Mutant into -
——»{ Based on Fitness New Population o

PzL Select an Architecture Altering Operation
> Based on its Specified Probability
— Perform the -
Select One Individual | Architecture AlteringH> Insert Offspring into >
Based on Fitness Operation New Population

Figure 4. Flowchart of genetic programming

The preparatory steps specify what the user must provide in advance to
the genetic programming system. Once the run is launched, the executiona
steps as shown in the flowchat (Figure 4) are executed. Genetic
programming is problem-independent in the sense that the flowchart
specifying the basic sequence of executional steps is not modified for each
new run or each new problem.

There is usually no discretionary human intervention or interaction
during a run of genetic programming (dthough a human user may exercise
judgment as to whether to terminate arun).

Genetic programming starts with an initial population of computer
programs composed of functions and terminals appropriate to the problem.
Theindividua programs in the initial population are typically generated by
recursively generating a rooted point-labded program tree composed of

Chapter 8

random choices of the primitive functions and terminas (provided by the
user as part of the first and second preparatory steps). Theinitial individuals
are usually generated subject to a pre-established maximum size (specified
by the user as a minor parameter as part of the fourth preparatory step). For
example, in the “ Full” initialization method nodes are taken from the
function set until a maximum tree depth is reached. Beyond that depth only
terminals can be chosen. Figure 5 shows several snapshots of this process. A
variant of this, the “ Grow” initialization method, alows the sdection of
nodes from the whole primitive set until the depth limit is reached.
Thereafter, it behaves like the “Full” method. Figure 6 illustrates this
process. Pseudo code for a recursive implementation of both the “Full” and
the “Grow” methods is given in Figure 7. The code assumes that programs
are represented as prefix-notation expressions. Additiona details are found
in Foundations of Genetic Programming (Langdon and Poli 2002).

In generd, after the initidization phase, the programs in the population
are of different size (number of functions and terminals) and of different
shape (the particular grgphical arrangement of functions and terminals in the
program tree).

=1 =2 =3
A ©
t=4 t=5 K
(3 (1)
X y X ¥ X

Figure 5. Creation of aseven-point tree using the “Full” initialization method (t=time)

Chapter 8

t=1 =2 =3
X X
=4 =5
X X
2 2 y

Figure 6. Creation of afive-point tree using the “Grow” initialization method (t=time)

procedure: gen rnd_expr

arguments:

func_set /* A function set */

term set /* A terminal set */

max_d /* Mazimum depth for expressions */

method /* Either “Full” or “Grow” */
results:

expr /% An expression in prefiz notation */
begin

if max_d = 0 or method = “Grow” and random digit = 1 then
expr = choose random_element(term_set)

else
func = choose_random _element(func_set)
for i = 1 to arity(func):

arg i = gen_rnd_ezpr(func_set, term_set, maz_d - 1, method);

expr = (func, arg 1, arg 2, ...);

endif

end

Figure 7. Pseudo code for recursive program generation with the “Full” and “Grow” methods

Each individual program in the population is ether measured or
compared in terms of how well it performs the task at hand (using the fitness
measure provided in the third preparatory step). For many problems, this
measurement yidds a single explicit numerica vaue, caled fitness.
Normally, fitness evaluation requires executing the programs in the
population, often multiple times, within the genetic programming system. A
variety of execution strategies exist, including the (relatively uncommon)

Chapter 8

off-line or on-line compilation and linking and the (rdativdy common)
virtual-machi ne-code compilaion and interpretation.

Interpreting a program tree means executing the nodes in the tree in an
order that guarantees that nodes are not executed before the value of ther
arguments (if any) is known. This is usually done by traversing the treein a
recursive way starting from the root node, and postponing the evaluation of
each node until the value of its children (arguments) is known. This process
isillustrated in Figure 8, where the numbers to the right of internal nodes
represent the results of evaluating the subtrees rooted at such nodes. In this
example, the independent variable X evauates to —1. Figure 9 gives a
pseudo-code implementation of the interpretation procedure. The code
assumes that programs are represented as prefix-notation expressions and
that such expressions can be treated as lists of components (where a
construct like expr(i) can be used to read or set component i of expression
expr).

3 "0 x 1 3T Xeaeeoe 2

Figure 8. Example interpretation of a syntax tree (the terminal x is a variable has a value of -
1

Chapter 8

procedure: eval

arguments:

expr /* An expression in prefix notation */
results:

value /* A number */
begin

if expr is a list then /* Non-terminal */
proc = expr(1)
value = proc(eval(expr(2)),eval(expr(3)),...)
else /* Terminal */
if expr is a variable or a constant then
value = expr
else /* 0-arity function */
value = expr()
endif
endif
end

Figure 9. Typical interpreter for genetic programming

Irrespective of the execution strategy adopted, the fitness of a program
may be measured in many different ways, including, for example, in terms of
the amount of error between its output and the desired output, the amount of
time (fud, money, ec.) required to bring a system to a desired target state,
the accuracy of the program in recognizing patterns or classifying objects
into classes, the payoff that a game-playing program produces, or the
compliance of a complex structure (such as an antenna, circuit, or controller)
with user-specified design criteria. The execution of the program sometimes
returns one or more explicit values. Alternatively, the execution of a
program may consist only of side effects on the state of a world (e.g., a
robot’s actions). Alternatively, the execution of a program may yidd both
return val ues and side effects.

The fitness measure is, for many practical problems, multi-objective in
the sense that it combines two or more different e ements. In practice, the
different e ements of the fitness measure are in competition with one another
to some degree.

For many problems, each program in the population is executed over a
representative sample of different fitness cases. These fithess cases may
represent different values of the program’s input(s), different initial
conditions of a system, or different environments. Sometimes the fitness
cases are constructed probabilistically.

The creation of theinitia random population is, in effect, a blind random
search of the search space of the problem. It provides a basdine for judging

Chapter 8

future search efforts. Typicdly, the individual programs in generation O all
have exceedingly poor fitness. Nonetheless, some individuas in the
population are (usudly) more fit than others. The differences in fitness are
then exploited by genetic programming. Genetic programming applies
Darwinian sd ection and the genetic operations to create a new population of
offspring programs from the current population.

The gendic operations include crossover (sexual recombination),
mutation, reproduction, and the architecture-atering operations. Given
copi es of two parent trees, typically, crossover involves randomly selecting a
crossover point (which can equivaently be thought of as either a node or a
link between nodes) in each parent tree and swapping the sub-trees rooted at
the crossover points, as exemplified in Figure 10. Often crossover points are
not selected with uniform probability. A frequent strategy is, for example, to
sdect internal nodes (functions) 90% of the times, and any node for the
remaining 10% of the times. Traditional mutation consists of randomly
sdecting a mutation point in atree and substituting the sub-tree rooted there
with a randomly generated sub-tree, as illustrated in Figure 11. Mutation is
sometimes implemented as crossover between a program and a newly
generated random program (this is adso known as “headless chicken”
crossover). Reproduction involves simply copying certain individuals into
the new population. Architecture altering operations will be discussed later
in this chapter.

Crossover Crossover
Point Point
M gz LU
3 3
X ¥ e L X 2
~ Crossover e Crossover

/ Point ~/ Point

Parents » Offspring

Figure 10. Example of two-child crossover between syntax trees

Chapter 8

Mutation Mutation
~/ Point (__/ Point

¥

3

Randomly Generated i
Sub-tree X 2

Foles A5

Figure 11. Example of sub-tree mutation

The genetic operations described above are applied to individual(s) that
are probabilistically sdected from the population based on fitness. In this
probabilistic sdection process, better individuals are favored over inferior
individuals. However, the best individua in the population is not necessarily
selected and the warst individual in the population is not necessarily passed
over.

After the genetic operations are performed on the current population, the
population of offspring (i.e, the new generation) replaces the current
population (i.e., the now-old generation). This iterative process of measuring
fitness and peforming the genetic operations is repeasted over many
generations.

The run of genetic programming terminates when the termination
criterion (as provided by the fifth preparatory step) is satisfied. The outcome
of the run is specified by the method of result designation. The best
individual ever encountered during therun (i.e., the best-so-far individual) is
typically designated as the result of the run.

All programs in the initial random population (generation 0) of a run of
genetic programming are syntacticaly valid, executable programs. The
genetic operations that are performed during the run (i.e, crossover,
mutation, reproduction, and the architecture-altering operations) are
designed to produce offspring that are syntactically valid, executable
programs. Thus, every individua created during a run of genetic
programming (induding, in particular, the best-of-run individua) is a
syntacticaly valid, executable program.

There are numerous dternative implementations of genetic programming
that vary from the preceding brief description.

Chapter 8

4. EXAMPLE OF A RUN OF GENETIC
PROGRAMMING

To provide concreteness, this section contains an illustrative run of
genetic programming in which the goal is to automatically create a computer
program whose output is equa to the values of the quadratic polynomial
x>+x+1 in therange from —1 to +1. That is, the goal is to automatically creste
a computer program that matches certain numerica data. This process is
sometimes called system identification or symbolic regression.

We begin with the five preparatory steps.

The purpose of the first two preparatory steps is to specify the ingredients
of the to-be-evolved program.

Because the problem is to find a mathematicd function of one
independent variable, the terminal set (inputs to the to-be-evolved program)
includes the independent variable, x. The termina set aso includes
numerical constants. That is, thetermina set, T, is

T={X 0O}.

Here [0 denotes constant numerical terminals in some reasonabl e range
(say from —5.0 to +5.0).

The preceding statement of the problem is somewhat flexible in that it
does nat specify what functions may be employed in the to-be-evolved
program. One possible choice for the function set consists of the four
ordinary arithmetic functions of addition, subtraction, multiplication, and
division. This choice is reasonable because mathematical expressions
typicaly include these functions. Thus, the function set, F, for this problem
is

F={+-,*%.

The two-argument +, -, *, and %functions add, subtract, multiply, and
divide, respectivdy. To avoid run-time errors, the division function %is
protected: it returns a value of 1 when division by 0 is attempted (including O
divided by 0), but otherwise returns the quotient of its two arguments.

Each individua in the population is a compoasition of functions from the
specified function set and terminals from the specified terminal set.

Thethird preparatory step involves constructing the fitness measure. The
purpose of the fithess measureis to specify what the human wants. The high-
level goal of this problem is to find a program whaose output is equa to the
values of the quadratic polynomial x*+x+1. Therefore, the fitness assigned to
a particular individual in the population for this problem must reflect how
closdy the output of an individua program comes to the target polynomial
X*+x+1. The fitness measure could be defined as the value of the integral
(taken over values of the independent variable x between —1.0 and +1.0) of
the absolute vdue of the differences (errors) between the vaue of the

Chapter 8

individual mathematical expression and the target quadratic polynomial
X>+x+1. A smaller value of fitness (error) is better. A fitness (error) of zero
would indicate a perfect fit.

For most problems of symboalic regression or system identification, it is
not practicad or possible to ana ytically compute the value of the integra of
the absal ute error. Thus, in practice, theintegral is numerically approximated
using dozens or hundreds of different values of the independent variable x in
the range between —1.0 and +1.0.

The population size in this small illustrative example will bejust four. In
actual practice, the population size for arun of geneti c programming consists
of thousands or millions of individuas. In actua practice, the crossover
operation is commonly performed on about 90% of the individuals in the
population; the reproduction operation is performed on about 8% of the
population; the mutation operation is performed on about 1% of the
population; and the architecture-altering operations are performed on
perhaps 1% of the population. Because this illustrative example involves an
abnormally smal populaion of only four individuas, the crossover
operation will be performed on two individuals and the mutation and
reproduction operations will each be performed on one individua. For
simplicity, the architecture-altering operations are not used for this problem.

A reasonable termination criterion for this problem is that the run will
continue from generation to generation until the fitness of some individual
gets below 0.01. In this contrived example, the run will (atypicaly) yield an
algebraically perfect solution (for which the fitness measure attains the ideal
value of zero) after merdy one generetion.

Now that we have performed the five preparatory steps, the run of
genetic programming can be launched. That is, the executional steps shown
in the flowchart of Figure 4 are now performed.

Genetic programming starts by randomly creating a population of four
individual computer programs. The four programs are shown in Figure 12 in
the form of trees.

The first randomly constructed program tree (Figure 12a) is equivd ent to
the mathematical expression x+1. A program tree is executed in a depth-first
way, from left to right, in the style of the LISP programming language.
Specifically, the addition function (+) is executed with the variable x and the
constant value 1 as its two arguments. Then, the two-argument subtraction
function (-) is executed. Its first argument is the va ue returned by the just-
executed addition function. Its second argument is the constant value 0. The
overall result of executing the entire program treeis thus x+1.

The first program (Figure 12a) was constructed, using the “Grow”
method, by first choosing the subtraction function for the root (top point) of
the program tree. The random constructi on process continued in a depth-first

Chapter 8

fashion (from left to right) and chose the addition function to be the first
argument of the subtraction function. The random construction process then
chose the terminal x to be the first argument of the addition function (thereby
terminating the growth of this path in the program tree). The random
construction process then chose the constant terminal 1 as the second
argument of the addition function (thereby terminating the growth along this
path). Finaly, the random construction process chose the constant terminal O
as the second argument of the subtraction function (thereby terminating the
entire construction process).

& 444,

x+1 x*+1
Figure 12. Initial population of four randomly created individuals of generation 0

© @

4

%Q/GVAA&

i %-L/J 1

2

Figure 13. The fitness of each of the four randomly created individuas of generationO is
equal to the area between two curves.

Chapter 8

(a) (b) © @
() (+) () (+)
(+) @ © © O &
ONOERONG (+)
& @

x+1 1 X X +x+1

Figure 14. Population of generation 1 (after one reproduction, one mutation, and one two-
offspring crossover operation)

The second program (Figure 12b) adds the constant termina 1 to the
result of multiplying x by x and is equivalent to x*+1. The third program
(Figure 12¢) adds the constant termina 2 to the constant terminal 0 and is
equivalent to the constant value 2. The fourth program (Figure 12d) is
equivaent to x.

Randomly created computer programs will, of course, typicaly be very
poor at solving the problem a hand. However, even in a population of
randomly created programs, some programs are better than others. The four
random individuals from generation O in Figure 12 produce outputs that
deviate from the output produced by the target quadratic function X+x+1 by
different amounts. In this particular problem, fitness can be graphicaly
illustrated as the area between two curves. That is, fitnessis equd to the area
between the parabola X*+x+1 and the curve representing the candidate
individual. Figure 13 shows (as shaded areas) the integral of the absolute
value of the errors between each of the four individualsin Figure 12 and the
target quadratic function x*+x+1. The integral of absolute error for the
straight line x+1 (the first individual) is 0.67 (Figure 13d). The integra of
absolute error for the parabola x°+1 (the second individual) is 1.0 (Figure
13b). The integrals of the absolute errors for the remaining two individuals
are 1.67 (Figure 13c) and 2.67 (Figure 13d), respectively.

As can be seenin Figure 13, the straight line x+1 (Figure 134) is closer to
the parabola x*+x+1 in the range from —1 to +1 than any of its three cohorts
in the population. This straight line is, of course, not equivaent to the
parabola x’+x+1. This best-of-generation individual from generation O is not
even a quadratic function. It is merdy the best candidate that happened to
emerge from the blind random search of generation 0. In the valley of the
blind, the one-eyed man is king.

After the fitness of each individua in the population is ascertained,
genetic programming then probabilistically sdects rdativdy more fit

Chapter 8

programs from the population. The genetic operations are applied to the
sdected individuals to create offspring programs. The most commonly
employed methods for sdecting individuas to participate in the genetic
operations are tournament sdection and fitness-proportionate selection. In
both methods, the emphasis is on sdecting relatively fit individuals. An
important feature common to both methods is that the selection is not
greedy. Individuas that are known to beinferior will be selected to a certain
degree. The best individud in the population is not guaranteed to be
sdected. Moreover, the worst individua in the population will not
necessarily be exd uded. Anything can happen and nothing is guaranteed.

We first perform the reproduction operation. Because the first individual
(Figure 12a) is the most fit individual in the population, it is very likely to be
sdected to participate in a genetic operation. Let’s suppose that this
particular individua is, in fact, sdected for reproduction. If o, it is copied,
without alteration, into the next generation (generation 1). It is shown in
Figure 14a as part of the population of the new generation.

We next perform the mutation operation. Because selection is
probabilistic, it is possible that the third best individua in the population
(Figure 12¢) is sdected. One of the three nodes of this individua is then
randomly picked as the site for the mutation. In this example, the constant
termina 2 is picked as the mutation site. This program is then randomly
mutated by ded eting the entire subtree rooted at the picked point (inthis case,
just the constant terminal 2) and inserting a subtree that is randomly grown
in the same way that the individuals of the initia random population were
originally created. In this particular instance, the randomly grown subtree
computes the quoatient of x and X using the protected division operation %.
The resulting individua is shown in Figure 14b. This particular mutation
changes the origind individual from one having a constant value of 2 into
one having a constant value of 1. This particular mutation improves fithess
from 1.67 to 1.00.

Finally, we perform the crossover operation. Because the first and second
individuals in generation O are both relatively fit, they are likdy to be
sdected to paticipae in crossover. The sdection (and resdection) of
relativdy more fit individuds and the exclusion and extinction of unfit
individuals is a characteristic feature of Darwinian selection. The first and
second programs are mated sexualy to produce two offspring (using the
two-offspring version of the crossover operation). One point of the first
parent (Figure 12a), namely the + function, is randomly picked as the
crossover point for the first parent. One point of the second parent (Figure
12b), namely its leftmost termina x, is randomly picked as the crossover
point for the second parent. The crossover operation is then performed on the
two parents. The two offspring are shown in Figures 2.4c and 2.4d. One of

Chapter 8

the offspring (Figure 14c) is equivalent to x and is not noteworthy. However,
the other offspring (Figure 14d) is equivalent to x*+x+1 and has a fitness
(integral of absolute errors) of zero. Because the fitness of this individual is
bdow 0.01, the termination criterion for the run is satisfied and the run is
automaticaly terminated. This best-so-far individud (Figure 14d) is
designated as the result of therun. Thisindividua is an agebraically correct
solution to the problem.

Note that the best-of-run individua (Figure 14d) incorporates a good trait
(the quadratic term x°) from the second parent (Figure 12b) with two other
good traits (the linear term x and constant term of 1) from the first parent
(Figure 12a). The crossover operation produced a sol ution to this problem by
recombining good traits from these two reatively fit parents into a superior
(indeed, perfect) offspring.

In summary, genetic programming has, in this example, automatically
created a computer program whose output is equal to the vaues of the
quadratic polynomial x*+x+1 in the range from —1 to +1.

5. ADVANCED FEATURES OF GENETIC
PROGRAMMING

Various advanced features of genetic programming are not covered by
the foregoing illustrative problem and the foregoing discussion of the
preparatory and executiond steps of genetic programming.

51 Constrained Syntactic Structures

For certain simple problems (such as the illustrative problem above), the
search space for a run of genetic programming consists of the unrestricted
set of possible compositions of the problem’ s functions and terminals.

However, for many prablems, a constrained syntactic structure imposes
restrictions on how the functions and terminals may be combined.

Consider, for example, a function that instructs a robot to turn by a
certain angle. In a typica implementation of this hypothetical function, the
function's first argument may be required to return a numerical vaue
(representing the desired turning angle) and its second argument may be
required to be a follow-up command (e.g., move, turn, stop). In other words,
the functions and terminals permitted in the two argument subtrees for this
particular function are restricted. These restrictions are implemented by
means of syntactic rules of construction.

Chapter 8

A constrained syntactic structure (sometimes called strong typing) is a
grammar that specifies the functions or terminals that are permitted to appear
as a specified argument of a specified function in the program tree.

When a constrained syntactic structure is used, there are typicaly
multiple function sets and multiple termina sets. The rules of construction
specify where the different function sets or terminal sets may be used.

When a constrained syntactic structure is used, al the individuas in the
initial random population (generaion 0) are created so as to comply with the
constrained syntactic structure. All gendlic operations (i.e, crossover,
mutation, reproduction, and the architecture-altering operations) that are
performed during the run are designed to produce offspring that comply with
the requirements of the constrained syntactic structure. Thus, al individuals
(including, in particular, the best-of-run individual) that are produced during
the run of genetic programming will necessarily comply with the
reguirements of the constrai ned syntactic structure.

5.2 Automatically Defined Functions

Human computer programmers organize sequences of reusable steps into
subroutines. They then repeatedly invoke the subroutines—typicaly with
different instantiations of the subroutines dummy variables (formal
parameters). Reuse diminates the need to “reinvent the whed” on each
occasion when a particular sequence of steps may be useful. Reuse makes it
possible to exploit a problem’s modularities, symmetries, and regularities
(and thereby potentialy acce erate the problem-solving process).

Programmers commonly organi ze their subroutines into hierarchies.

The automatically defined function (ADF) is one of the mechanisms by
which genetic programming implements the parameterized reuse and
hierarchical invocation of evolved code. Each automatically defined function
resides in a separate function-defining branch within the overall multi-part
computer program (see Figure 3). When automatically defined functions are
being used, a program consists of one (or more) function-defining branches
(i.e., automaticaly defined functions) as well as one or more main result-
producing branches. An automatically defined function may possess zero,
one or more dummy variables (formal parameters). The body of an
automaticaly defined function contains its work-performing steps. Each
automaticaly defined function bdongs to a particular program in the
population. An automatically defined function may be cdled by the
program’'s main result-producing branch, another automatically defined
function, or another type of branch (such as those described beow).
Recursion is sometimes allowed. Typicaly, the automaticadly defined
functions areinvoked with different instantiations of their dummy variables.

Chapter 8

The work-performing steps of the program’s main result-producing
branch and the work-performing steps of each automaticaly defined
function are automatically and simultaneously created during the run of
geneti c programmi ng.

The program’s main result-producing branch and its automatically
defined functions typicaly have different function and termina ses. A
constrained syntactic structure is used to implement automatically defined
functions.

Automatically defined functions are the focus of Genetic Programming
II: Automatic Discovery of Reusable Programs (Koza 19944) and the
videotape Genetic Programming Il Videotape: The Next Generation (Koza
1994b).

53 Automatically Defined Iterations, Automatically
Defined L oops, Automatically Defined Recursions,
and Automatically Defined Stores

Automatically defined iterations (ADIs), automatically defined 1oops
(ADLs), and automatically defined recursions (ADRS) provide means (in
addition to automatically defined functions) to reuse code.

Automatically defined stores (ADSs) provide means to reuse the result of
executing code.

Automatically defined iterations, automaticaly defined loops,
automaticaly defined recursions, and automatically defined stores are
described in Genetic Programming I11: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999).

54 Program Architecture and Architecture-Altering
Operations

The architecture of a program consists of

— thetotad number of branches,

— thetype of each branch (e.g., result-produci ng branch, automatically
defined function, automatically defined iteration, automatically defined
loop, automatically defined recursion, or automatically defined store),

— the number of arguments (if any) possessed by each branch, and

— if thereis more than one branch, the nature of the hierarchica references
(if any) alowed among the branches.

There are three ways by which genetic programming can arrive at the
architecture of the to-be-evolved computer program:

— The human user may prespecify the architecture of the overall program
(i.e., perform an additional architecture-defining preparatory step). That

Chapter 8

is, the number of preparatory steps isincreased from the five previously
itemized to six.

— Therun may employ evolutionary selection of the architecture (as
described in Genetic Programming 1), thereby enabling the architecture
of the overdl program to emerge from a competitive process during the
run of genetic programming. When this approach is used, the number of
preparatory steps remains at the five previoudly itemized.

— Therun may employ the architecture-altering operations (K oza 1994c,
1995; Koza, Bennett, Andre, and K eane 1999), thereby enabling genetic
programming to automatically create the architecture of the overdl
program dynamically during the run. When this approach is used, the
number of preparatory steps remains a the five previoudy itemized.

55 Genetic Programming Problem Solver (GPPS)

The Genetic Programming Problem Solver (GPPS) is described in the
1999 book Genetic Programming |1l: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999, part 4).

If GPPS is being used, the user is relieved of performing the first and
second preparatory steps (concerning the choice of the termina set and the
function set). The function set for GPPS consists of the four basic arithmetic
functions (addition, subtraction, multiplication, and division) and a
conditional operator (i.e., functions found in virtually every general-purpose
digital computer that has ever been built). Thetermina set for GPPS consists
of numerical constants and a set of input terminals that are presented in the
form of avector.

By employing this generic function set and terminal set, GPPS reduces
the number of preparatory steps from five to three

GPPS rdies on the architecture-altering operations to dynamically creete,
duplicate, and ddete subroutines and loops during the run of genetic
programming. Additionally, in version 2.0 of GPPS, the architecture-altering
operations are used to dynamicaly create, duplicate, and delete recursions
and internal storage. Because the architecture of the evolving program is
automaticaly determined during the run, GPPS diminates the need for the
user to specify in advance whether to empl oy subroutines, 100ps, recursions,
and internal storage in solving a given problem. It similarly eiminates the
need for the user to specify the number of arguments possessed by each
subroutine. And, GPPS diminaes the need for the user to specify the
hierarchical arrangement of the invocations of the subroutines, loops, and
recursions. That is, the use of GPPS relieves the user of performing the
preparatory step of specifying the program’ s architecture.

Chapter 8
5.6 Developmental Genetic Programming

Developmental genetic programming is used for problems of
synthesizing analog dectrical circuits, as described in part 5 of Genetic
Programming 1Il. When devd opmental genetic programming is used, a
complex structure (such as an dectrica circuit) is created from a simple
initial structure (the embryo).

6. HUMAN-COMPETITIVE RESULTS PRODUCED
BY GENETIC PROGRAMMING

Samud’s statement (quoted above) reflects the god articulated by the
pioneers of the 1950s in the fields of artificia intelligence and machine
learning, namely to use computers to automatically produce human-like
results. Indeed, getting machines to produce human-like results is the reason
for the existence of the fields of artificial intelligence and machine learning.

To make the notion of human-competitiveness more concrete, we say
that a result is “human-competitive” if it satisfies one or more of the eight
criteriaintable 1.

Table 1. Eight criteriafor saying that an automatically crested result is human-competitive

Criterion

A The result was patented as an invention in the
past, is animprovement over a patented
invention, or would qualify today asa
patentable new invention.

B The result is equal to or better than aresult
that was accepted as anew scientific result at
the time whenit was published in a peer-
reviewed sciertific journal.

C The result is equal to or better than aresult
that was placed into a database or archive of
results maintained by aninternational ly
recognized panel of sciertific experts.

D Theresult is publishableinits ownright asa
new scientific resultd] independent of the fact
that the result was mechanically created.

E The result is equal to or better than the most
recent human-created solution to a long-
standing problem for which there has been a
succession of increasingly better humarn-
created solutions.

F The result is equal to or better than aresult
that was considered an achievement inits
field at thetime it was first discovered.

Chapter 8

Criterion

G The result solves a problem of indisputable
difficulty inits field.

H The result holdsits own or wins a regulated

competition involving human contestants (in
the form of either live human players or
human-written computer programs).

As can seen from table 1, the eight criteria have the desirabl e attribute of
being a arms-length from the fidds of artificial inteligence, machine
learning, and genetic programming. That is, aresult cannot acquire the rating
of “human competitive’ merely because it is endorsed by researchersinside
the specialized fidds that are attempting to create machine inteligence.
Instead, a result produced by an automated method must earn the rating of
“human competitive’” independent of the fact that it was generated by an
automated method.

Table 2 lists the 36 human-competitive instances (of which we are aware)
where genetic programming has produced human-competitive results. Each
entry in the table is accompanied by the criteria (from table 1) that establish
the basis for the claim of human-competitiveness.

Table 2. [Enter acaption for thistable]

Claimed instance Basisfor claim of Reference
human-
competitiveness

1 Creationof abetter- B, F Spector, Barnum,
than-classical and Bernstein 1998
quantum algorithm
for the Deutsch-
Jozsa“early
promise” problem

2 Creationof abetter- B, F Spector, Barnum,
than-classical and Bernstein 1999
quantum algorithm
for Grover's
database search
problem

3 Creationof a D Spector, Barnum,
quantum algorithm Bernstein, and
for the depth-two Swamy 1999;
AND/OR query Barnum, Bernstein,
problem that is better and Spector 2000
than any previously
published result

4 Creationof a D Barnum, Bernstein,
quantum algorithm and Spector 2000
for the depth-one OR

query problem that is
better than any

Chapter 8

Claimed instance Basisfor claim of Reference
human-
competitiveness
previously published
result
5 Cregtion of a D Spector and
protocol for Bernstein 2002
communicating
information through
a quantum gate that
was previously
thought not to permit
such communication
6 Creation of anovel D Spector and
variant of quantum Bernstein 2002
dense coding
7 Creation of asoccer- H Luke 1998
playing program that
wonitsfirst two
games in the Robo
Cup 1997
competition
8 Credtion of asoccer- H Andre and Teller
playing program that 1999
ranked inthemiddle
of thefield of 34
human-written
programsinthe
Robo Cup 1998
competition
9 Creation of four B, E Sections 18.8 and
different algorithms 18.10 of Genetic
for the Programming |1 and
transmembrane sections 16.5 and
segment 17.2 of Genetic
identification Programming 11
problem for proteins
10 Creationof asorting A, D Sections 21.4.4,
network for seven 23.6, and 57.8.1 of
items using only 16 Genetic
steps Programming 11
11 Rediscovery of the A F Section 25.15.1 of
Campbell ladder Genetic
topology for lowpass Programming I11
and highpassfilters and section 5.2 of
Genetic
Programming IV
12 Rediscovery of the A F Section 25.15.2 of
Zobel “M-derived Genetic
half section” and Programming 11

Chapter 8

Claimed instance Basisfor claim of Reference
human-
competitiveness
“constant K” filter
sections
13 Rediscovery of the AF Section 27.3.7 of
Cauver (elliptic) Genetic
topology for filters Programming 11
14 Automatic AF Section 32.3 of
decomposition of the Genetic
problem of Programming 11
synthesizing a
crossover filter
15 Rediscovery of a AF Section 42.3 of
recognizable voltage Genetic
gainstageand a Programming 11
Darlington emitter-
follower section of
an amplifier and
other circuits
16 Synthesisof 60and A, F Section 45.3 of
96 decibel amplifiers Genetic
Programming 11
17 Synthesisof andlog A, D, G Section 47.5.3 of
computational Genetic
circuitsfor squaring, Programming 11
cubing, square root,
cube root, logarithm,
and Gaussian
functions
18 Synthesis of areal- G Section 48.3 of
time analog circuit Genetic
for time-optimal Programming 11
control of arobot
19 Synthesis of an A G Section 49.3 of
electronic Genetic
thermometer Programming 11
20 Synthesis of a A G Section 50.3 of
voltage reference Genetic
circuit Programming 11
21 Creationof acellular D, E and section 58.4 of
automata rule for the Genetic
majority Programming 11
classification
problem that is better
than the Gacs-
Kurdyumov-Levin
(GKL) rule and all

other known rules
written by humans

Chapter 8

Claimed instance Basisfor claim of Reference
human-
competitiveness
22 Creation of motifs C Section 59.8 of
that detect the D—E— Genetic
A-D box family of Programming 11
proteins and the
manganese
superoxide
dismutase family
23 Synthesis of AF Section 3.7 of
topology for aPID- Genetic
D2 (proportional, Programming IV
integrative,
derivative, and
second derivative)
controller
24 Synthesis of an AF Section 4.3 of
analog circuit Genetic
equivalent to Programming IV
Philbrick circuit
25 Synthesis of NAND AF Section 4.4 of
circuit Genetic
Programming IV
26 Simultaneous G Chapter 5 of Genetic
synthesis of Programming IV
topology, sizing,
placement, and
routing of analog
electrical circuits
27 Synthesis of A F Section 9.2 of
topology for aPID Genetic
(proportional, Programming IV
integrative, and
derivative) controller
28 Chapter 14 of
Rediscovery of Genetic
negative feedback A EFG Programming IV
29 Section 15.4.1 of
Synthesis of alow- Genetic
voltage balun circuit A Programming IV
30 Synthesis of a mixed Section 15.4.2 of
analog-digital Genetic
variable capacitor Programming IV
circuit A
31 Section 15.4.3 of
Synthesis of ahigh- Genetic
current load circuit A Programming |V
32 Synthesis of a Section 15.4.4 of
voltage-current A Genetic

Chapter 8

Claimed instance Basisfor claim of Reference
human-
competitiveness

conversion circuit Programming IV
33 Section 15.4.5 of

Synthesis of acubic Genetic

signal generator A Programming IV
34 Synthesis of a Section 15.4.6 of

tunable integrated Genetic

activefilter A Programming IV
35 Cregtion of PID A,B,D,E,F,G Chapter 12 of

tuning rules that Genetic

outperform the Programming IV

Ziegler-Nichols and

Astrom-Hagglund

tuning rules
36 Creation of three A,B,D,E FG Chapter 13 of

non-PID controllers Genetic

that outperform a Programming IV

PID contraller that

uses the Ziegler-

Nichols or Astrom-

Hagglund tuning

rules

There are now 23 instances where genetic programming has duplicated
the functionality of a previously patented invention, infringed a previoudy
patented invention, or created a patentable new invention (see criterion A in
Tablel). Spedificaly, there are 15 instances where geneti ¢ programming has
created an entity that either infringes or duplicates the functiondity of a
previously patented 20™-century invention, six instances where genetic
programming has done the same with respect to an invention patented after
January 1, 2000, and two instances where genetic programming has created a
patentable new invention. The two new inventions are genera-purpose
contrallers that outperform controllers empl oyi ng tuning rul es that have been
in widespread usein industry for most of the 20™ century.

7. PROMISINGAPPLICATION AREASFOR
GENETIC PROGRAMMINGAND OTHER
METHODS OF GENETIC AND EVOLUTIONARY
COMPUTATION

Since its early beginnings, the fidd of genetic and evolutionary
computation has produced a cornucopia of results.

Chapter 8

Genetic programming and othe methods of genetic and evolutionary
computation may be especialy productive in areas having some or all of the
following characteristics:

— wherethe interrelationships among the rel evant variables are unknown or
poorly understood (or where it is suspected that the current understanding
may paossibly be wrong),

— wherefinding the size and shape of the ultimate sol ution to the problem
isamajor part of the prablem,

— wherelarge amounts of primary data requiring examination,
dassification, and integration is accumulating in computer readable form,

— wherethere are good simulators to test the performance of tentative
solutions to a problem, but poor methods to directly obtain good
solutions,

— where conventional mathematical analysis does not, or cannot, provide
analytic solutions,

— where an approxi mate solution is acceptable (or is the only result that is
ever likey to be obtained), or

— where small improvements in performance are routinely measured (or
easily measurable) and highly prized.

8. GENETIC PROGRAMMING THEORY

Genetic programming is a search technique that explores the space of
computer programs. As discussed above the search for solutions to a
problem starts from a group of points (random programs) in this search
space. Those points that are of above average quality are then used to
generate a new generation of points through crossover, mutation,
reproduction and possibly other genetic operations. This process is repeated
over and over again until atermination criterion is satisfied.

If we could visualize this search, we would often find that initialy the
population looks a hit like a cloud of randomly scattered points, but that,
generation after generation, this cloud changes shape and moves in the
search space following a well defined trgectory. Because genetic
programming is a stochastic search technique, in different runs we would
observe different trgjectories. These, however, would very likely show very
clear regularities to our eyethat could provide us with a deep understanding
of how the algorithm is searching the program space for the solutions to a
given problem. We could probably readily see, for example, why genetic
programming is successful in finding solutions in certain runs and with
certain parameter settings, and unsuccessful in/with others.

Chapter 8

Unfortunatdy, it is normally impossible to exactly visualize the program
search space due to its high dimensionality and complexity, and so we
cannot just use our senses to understand and predict the behavior of genetic
programming.

In this situation, one approach to gain an understanding of the behavior
of a genetic programming system is to perform many rea runs and record
the variations of certain numerical descriptors (like the average fitness or the
average size of the programs in the population at each generation, the
average difference between parent and offspring fitness, etc.). Then, one can
try to hypothesize explanations about the behavior of the system that are
compatiblewith (and could explain) the empirical observations.

This exerciseis very error prone, though, because a genetic programming
system is a compl ex adaptive system with zillions of degrees of freedom. So,
any small number of statistical descriptorsislikely to be ableto capture only
atiny fraction of the complexities of such a system. Thisis why in order to
understand and predict the behavior of genetic programming (and indeed of
most other evolutionary agorithms) in precise terms we need to define and
then study mathemati ca models of evol utionary search.

Schema theories are among the oldest, and probably the best-known
classes of models of evolutionary agorithms. A schema (pl. schemata) is a
sat of points in the search space sharing some syntactic feature. Schema
theories provide information about the properties of individuas of the
population bedonging to any schema at a given generation in terms of
guantities measured at the previous generation, without having to actually
run the a gorithm.

For example, in the context of genetic agorithms operating on binary
strings, a schema is, syntactically, a string of symbols from the alphabet
{0,1,*}, like *10*1. The character * is interpreted as a “don't care" symbol,
so that, semantically, a schema represents a set of bit strings. For example
the schema *10*1 represents a set of four strings: {01001, 01011, 11001,
11011}.

Typically schema theorems are descriptions of how the number (or the
proportion) of members of the population belonging to (or matching) a
schema varies over time.

For a given schema H the sdection/crossover/mutation process can be
seen as a Bernoulli trial, because a newly created individua either samples
or does not sample H. Therefore, the number of individuals sampling H at
the next generation, m(H,t+1) is a binomia stochastic variable. So, if we
denote with a(H,t) the success probability of each tria (i.e the probability
that a newly created individual samples H), an exact schema theorem is
simply

Chapter 8
E[m(H,t+1)]=M a(H,t)

where M is the population size and E[.] is the expectation operator. Holland's
and other approximate schema theories (Holland 1975; Goldberg 1989;
Whitley 1994) normally provide a lower bound for a(H,t) or, equivadently,
for E[m(H,t+1)]. For example, severa schema theorems for one-point
crossover and point mutation have the following form

a(H.02 pH, O~ p,)) 1=, x (T x|

where m(H,t) is number of individuas in the schema H at generation t, M is
the population size, p(H,t) is the sdection probability for strings in H at
generation t, py, is the mutation probability, O(H) is the schema order, i.e
number of defining bits, p. is the crossover probability, L(H) is the defining
length, i.e. distance between the furthest defining bits in H, and N is the
bitstring length. The factor ¢ differs in the different formulation of the
schematheorem: g=1-m(H,t)/M in (Holland, 1975) (where one of the parents
was chasen randomly, irrespective of fithess), =1 in (Goldberg, 1989) and
o=1-p(H,t) in (Whitley, 1994).

More recently, Stephens and collaborators (Stephens and Wae broeck
1997; Stephens and Waebroeck 1999) have produced exact formulations for
a(H,t), which are now known as “exact" schema theorems for genetic
algorithms. These, however, are beyond the scope of this chapter.

Thetheory of schemata in genetic programming has had a slow start, one
of the difficulties being that the variable size tree structure in genetic
programming makes it more difficult to develop a definition of genetic
programming schema having the necessary power and flexibility. Several
aternatives have been proposed in the literature, which define schemata as
composed of one or multiple trees or fragments of trees. Here, however, we
will focus only on a particular one, which was proposed in (Pali and
Langdon, 1997; Pali and Langdon 1998) since this has later been used to
develop an exact and genera schema theory for genetic programming (Poli
2001; Langdon and Pali 2002).

In this definition, syntacticaly, a genetic programming schema is atree
with some “don’'t care” nodes which represents exactly one primitive
function or terminal. Semantically, a schema represents al programs that
match its size, shape and defining (non-“don’'t care™) nodes. For example,
the schema

H= (DON T-CARE x (+ y DON T-CARE))

representsthe programs (+ x (+y x)), (+ x (+vy vy)), (*
X (+y X)), dc

Chapter 8

The exact schema theorem in (Poli 2001) gives the expected proportion
of individuals matching a schema in the next generation as a function of
information about schemata in the current generation. The calculation is non-
trivial, but it is easier than one might think.

Let us assume, for simplicity, that only reproduction and (one-offspring)
crossover are performed. Because these two operators are mutualy
exclusive, for a generic schemaH we then have:

a(H,t) = Pr[Anindividual inH isobtainedviareproduction]
+ Pr[Anoffspring matching Hisproducedby crossover]

Then, assuming that reproduction is performed with probability p, and
crossover with probability pe (with p.+p=1), we obtain

a(H,t)=p, x Pr[Anindividual inH isselectedfor cloning]
+ b xPr Theparentsand thecrossover points
Pe aresuchthat theoffspring matchesH

Clearly, the first probahility in this expression is simply the sdection
probability for members of the schema H as dictated by, say, fithess-
proportionate selection or tournament sd ection. So,

Pr[SeIectingan individud inH for cloning] = p(H,1)

We now need to calculate the second term in a(Ht), that is the
probability that the parents have shapes and contents compatible with the
creation of an offspring matching H, and that the crossover paints in the two
parents are such that exactly the necessary materia to creaste such an
offspring is swapped. Thisisthe harder part of the calculation.

An observation that helps simplify the problem is that, athough the
probability of choosing a particular crossover point in a parent depends on
the actual size and shape of such a parent, the process of crossover point
sdection is independent from the actual primitives present in the parent tree.
So, for example, the probability of choosing any crossover paoint in the
program (+ x (+ y X)) isidenticd to the probability of choosing any
crossover point in the program (AND D1 (OR D1 D2)) . Thisis because
the two programs have exactly the same shape. Thanks to this observation
we can write

Chapter 8

Theparentsand thecrossover points
{aresuch that theoffspringmatchesH }
_ ¥ P{Choosi NQCrossover poi nts}
iand j inshapeskandl

For dl pairsof For al crossover
parent shapes k,| pointsi,j in
shapes kand|

. Selectingparentswithshapesk and |, suchthat if
crossedover at pointsi and j producean offspringin H

If, for simplicity, we assume that crossover points are selected with
uniform probability, then

Br Choosing crossover points | 1 N 1
iand j inshapes kand| - Nodes inshape k Nodes inshapel

So, we ae left with the problem of calculating the probability of
sdecting (for crossover) parents having specific shapes while a the same
time having an arrangement of primitives such that, if crossed over a certain
predefined points, they produce an offspring matching a particular schema of
interest.

Again, here we can simplify the problem by considering how crossover
produces offspring: it excises a subtree rooted at the chosen crossover point
inaparent, and replaces it with a subtree excised from the chosen crossover
point in the other parent. This means that the offspring will have the right
shape and primitives to match the schema of interest if and only if, after the
excision of the chosen subtree, the first parent has shape and primitives
compatible with the schema, and the subtree to be inserted has shape and
primitives compatible with the schema. That is:

P{ Selecting parentswith shapesk and |, such that if W

crossed over at points i and j produce an offspring in H

_ P{Sel ecting aroot - donating parent with shape k such that its upper]
part w.r.t. crossover point i matchesthe upper part of H w.rt. i

y P{Sel ecting asubtree - donating parent with shape | such that itsloweﬂ
part w.r.t.crossover point j matchesthelower part of H w.r.t. i

These two sdection probabilities can be cal culated exactly. However, the
calculation requires the introduction of several other concepts and naotation,

Chapter 8

which are beyond the introductory nature of this chapter. These definitions,
the complete theory and a number of examples and applications can be
found in (Pali 2001; Langdon and Poli 2002; Poli and McPhee 2003a; Pali
and McPhee 2003Db).

Although exact schema theoretic modds of genetic programming have
become available only very recently, they have aready started shedding
some light on fundamental questions regarding the how and why genetic
programming works. Importantly, other important theoretica modes of
genetic programming have recently been devel oped which add even more to
our theoretical understanding of genetic programming. These, however, go
well beyond the scope of this chapter. The interested reader should consult
Foundations of Genetic Programming (Langdon and Poli, 2002) and (Poli
and McPhee 2003a; Poli and M cPhee 2003b) for more information.

9. CONCLUSIONS

In his seminal 1948 paper entitled “Intelligent Machinery,” Turing
identified three ways by which human-competitive machine intelligence
might be achieved. In connection with one of those ways, Turing (1948)
said:

“There is the genetica or evolutionary
search by which a combination of genes is looked
for, the criterion being the surviva vaue.”

Turing did not specify how to conduct the “genetica or evolutionary
search” for machine intdligence. In particular, he did not mention the idea of
a population-based paralld search in conjunction with sexua recombination
(crossover) as described in John Holland's 1975 book Adaptation in Natural
and Artificial Systems. However, in his 1950 paper “Computing Machinery
and Intdligence,” Turing (1950) did point out

“We cannot expect to find a good child-
machine at the first attempt. One must experi ment
with teaching one such machine and see how well
it learns. One can then try another and see if it is
better or worse There is an obvious connection
between this process and evolution, by the
identifications

“Structure of the child machine =
Hereditary materid

“Changes of the child machine = Mutations

Chapter 8

"Natural sdection = Judgment of the
experimenter”

That is, Turing perceived in 1948 and 1950 that one paossibly productive
approach to machine intelligence would involve an evolutionary process in
which a description of a computer program (the hereditary material)
undergoes progressive modifi cation (mutation) under the guidance of natural
sdlection (i.e, sdective pressurein the form of what we now cal “fitness”).

Today, many decades later, we can see that indeed Turing was right.
Genetic programming has started fulfilling Turing’s dream by providing us
with a systematic method, based on Darwinian evolution, for getting
computers to automatically solve hard real-life problems. To do so, it simply
requires a high-level statement of what needs to be done (and enough
computing power).

Turing also understood the need to evaluate objectively the behaviour
exhibited by machines, to avoid human biases when assessing ther
intelligence. This led him to propose an imitation game, now know as the
Turing test for machine intelligence, whose goals are wonderfully
summarised by Arthur Samud’s position statement quoted in the
introduction of this chapter.

At present genetic programming is certainly not in a position to produce
computer programs that would pass the full Turing test for machine
intelligence, and it might not be ready for this immense task for centuries.
Nonethdess, thanks to the constant technological improvements in genetic
programming technology, in its theoretica foundations and in computing
power, genetic programming has been able to solve tens of difficult
problems with human-compeitive results (see Table 2) in the recent past.
These are a small step towards fulfilling Turing and Samud’s dreams, but
they are also early signs of things to come. It is, indeed, arguable that in a
few years time genetic programming will be able to routindy and
competently solve important problems for usin a variety of specific domains
of application, even when running on a single personal computer, thereby
becoming an essential collaborator for many of human activities. This, we
believe, will be a remarkable step forward towards achieving true, human-
competitive machine intelligence.

SOURCESOFADDITIONAL INFORMATION ABOUT
GENETIC PROGRAMMING

Sources of information about genetic programming include
- Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a) and the accompanying videotape Genetic Programming: The
Movie (Koza and Rice 1992);

Chapter 8

- Genetic Programming Il: Automatic Discovery of Reusable Programs (Koza 1994d) and
the accompanying videotape Genetic Programming Il Videotape: The Next Generation
(Koza 1994b);

- Genetic Programming I1l: Darwinian Invention and Problem Solving (Koza, Bennett,
Andre, and Keane 1999) and the accompanying videotape Genetic Programming 111
Videotape: Human-Competitive Machine Intelligence (Koza, Bennett, Andre, Keane, and
Brave 1999);

- Genetic Programming |V. Routine Human-Competitive Machine Intelligence (Koza,
Keane, Streeter, Mydlowec, Y u, and Lanza 2003);

- Genetic Programming/7An Introduction (Banzhaf, Nordin, Keller, and Francone 1998);

- Genetic Programming and Data Structures. Genetic Programming + Data Sructures =
Automatic Programming! (Langdon 1998) in the series on genetic programming from
Kluwer Academic Publishers;

- Automatic Re-engineering of Software Using Genetic Programming (Ryan 1999) in the
series on genetic programming from Kluwer Academic Publishers;

- Data Mining Using Grammar Based Genetic Programming and Applications (Wong and
Leung 2000) in the series on genetic programming from Kluwer Academic Publishers;

- Principia Evolvica: Smulierte Evolution mit Mathematica (Jacob 1997, in German) and
llustrating Evol utionary Computation with Mathematica (Jacob 2001);

- Genetic Programming (1ba 1996, in Japanese);

- Evolutionary Program Induction of Binary Machine Code and Its Application (Nordin
1997);

- Foundations of Genetic Programming (Langdon and Poli 2002);

- Emergence, Evolution, Intelligence: Hydroinformatics (Babovic 1996);

- Theory of Evolutionary Algorithms and Application to System Synthesis (Blickle 1997);

- edited collections of papers such as the three Advances in Genetic Programming books
from the MIT Press (Kinnear 1994; Angeline and Kinnear 1996; Spector, Langdon,
O’'Reilly, and Angeline 1999);

- the proceedings of the Genetic Programming Conference held between 1996 and 1998
(Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, 1ba, and
Riolo 1998);

- the proceedings of the annual Genetic and Evolutionary Computation Conference
(GECCO) (combining the formerly annual Genetic Programming Conference and the
formerly biannual International Conference on Genetic Algorithms) operated by the
International Society for Genetic and Evolutionary Computation (ISGEC) and held
starting in 1999 (Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 1999;
Whitley, Goldberg, Cantu-Paz, Spector, Parmee, and Beyer 2000; Spector, Goodman,
Wu, Langdon, Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and Burke 2001; Langdon,
Cantu-Paz, Mathias, Roy, Davis, Poli, Balakrishnan, Honavar, Rudolph, Wegener, Bull,
Potter, Schultz, Miller, Burke, and Jonoska 2002);

- theproceedings of the annual Euro-GP conferences held starting in 1998 (Banzhaf, Poli,
Schoenauer, and Fogarty 1998; Poli, Nordin, Langdon, and Fogarty 1999; Poli, Banzhaf,
Langdon, Miller, Nordin, and Fogarty 2000; Miller, Tomassini, Lanzi, Ryan, Tettamanzi,
and Langdon 2001; Foster, Lutton, Miller, Ryan, and Tettamanzi 2002);

- the proceedings of the Workshop of Genetic Programming Theory and Practice
organized by the Center for Study of Complex Systems of the University of Michigan (to
be published in 2003 by Kluwer Academic Publishers),

- the Genetic Programming and Evolvable Machines journal (from Kluwer Academic
Publishers) started in April 2000;

Chapter 8

- web sites such as www. geneti c- progranm ng.org and www geneti c-
pr ogr anmi ng. com

- LISP code for implementing genetic programming, available in Genetic Programming
(Koza 19928), and genetic programming implementations in other languages such as C
or Java (Web sites such as www. geneti c- progr amm ng. or g contain links to
computer code in various programming languages);

- early papers on genetic programming, such as the Stanford University Computer Science
Department technical report Genetic Programming: A Paradigm for Genetically
Breeding Populations of Computer Programs to Solve Problems (Koza 1990a) and the
paper “Hierarchical Genetic Algorithms Operating on Populations of Computer
Programs,” presented at the 11th International Joint Conference on Artificia Intelligence
in Detroit (Koza 1989);

- an annotated bibliography of the first 100 papers on genetic programming (other than
those of which John Koza was the author or co-author) in appendix F of Genetic
Programming I1: Automatic Discovery of Reusable Programs (Koza 1994a); and

- William Langdon's bibliography on genetic programming a
http://ww. cs. bham ac. uk/ ~wbl / bi bl i o/ or
http://1iinww.ira.uka. de/ bi bliography/Ai/genetic.programi
ng. ht m . This bibliography is the most extensive in the field and contains over 3,034
papers (as of January 2003) and over 880 avthors. It provides on-line access to many of
the papers.

BIBLIOGRAPHY

Andre, David and Teller, Astro. 1999. Evolving team Darwin United. In Asada, Minoru and
Kitano, Hiroaki (editors). RoboCup-98: Robot Soccer World Cup I1. Lecture Notesin
Computer Science. Volume 1604. Berlin: Springer-Verlag. Pages 346-352.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advancesin Genetic
Programming 2. Cambridge, MA: The MIT Press.

Babovic, Vladan. 1996. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam,
The Netherlands: Balkema Publishers.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant, Jakiela,
Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of the Genetic and
Evolutionary Computati on Conference, July 13-17, 1999, Orlando, Florida USA. San
Francisco, CA: Morgan Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frark D. 1998. Genetic
Programming: An Introduction. San Francisco, CA: Morgan Kauf mann and Heidelberg:
dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C. 1998.
Genetic Programming: First European Workshop. EuroGP' 98. Paris, France, April 1998
Proceedings. Lecture Notes in Computer Science. Volume 1391. Berlin, Germany:
Springer-Verlag.

Barnum, H., Bernstein, H.J. and Spector, Lee. 2000. Quantum circuits for OR and AND of
ORs. Journal of Physics A: Mathematical and General. 33(45)8047—-8057. November 17,
2000.

Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System
Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG an
der ETH Zuerich.

Chapter 8

Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan, Conor, and Tettamanzi, Andrea G. B.
(editors). 2002. Genetic Programming: 5™ European Conference, EuroGP 2002, Kinsale,
Irdland, April 2002 Proceedings.

Goldberg, David E. 1989. Genetic Algorithmsin Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems: An Introductory
Analysi swith Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI:
University of Michigan Press. Second edition. Cambridge, MA: The MIT Press 1992.

Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In
Japanese.

Jacob, Christian. 1997. Principia Evolvica: Smulierte Evolution mit Mathematica.
Heidelberg, Germany: dpunkt.verlag.

Jacob, Christian. 2001. Illustrating Evol utionary Computation with Mathematica. San
Francisco: Morgan Kaufmann.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA:
MIT Press.

Koza, John R. 1989. Hierarchical genetic algorithms operating on populations of computer
programs. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann. Volume |. Pages 768-774.

Koza, John R. 1990a. Genetic Programming: A Paradigmfor Genetically Breeding
Populations of Computer Programsto Solve Problems. Stanford University Computer
Science Department technical report STAN-CS-90-1314. June 1990.

Koza, John R. 1992a. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming I1: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming |1 Videotape: The Next Generation. Cambridge,
MA: MIT Press.

Koza, John R. 1994c. Architecture-Altering Operations for Evolving the Architecture of a
Multi-Part Programin Genetic Programming. Stanford University Computer Science
Department technical report STAN-CS-TR-94-1528. October 21, 1994.

Koza, John R. 1995. Gene duplication to enable genetic programming to concurrently evolve
both the architecture and work-performing steps of acomputer program. Proceedings of
the 14™ International Joint Conference on Artificial Intelligence. San Francisco: Morgan
Kaufmann. Pages 734-740.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kayanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick.
(editors). 1998. Genetic Programming 1998: Proceedings of the Third Annual Conference.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett 111, Forrest H, Andre, David, and Keane, Martin A. 1999. Genetic
Programming I11: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett 11, Forrest H, Andre, David, Keane, Martin A., and Brave, Scott.
1999. Genetic Programming |11 Videotape: Human-Competitive Machine Intelligence. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi,
and Riolo, Rick L. (editors). Genetic Programming 1997: Proceedings of the Second
Annual Conference, July 13-16, 1997, Sanford Univer sity. San Francisco, CA: Morgan
Kaufmann.

Chapter 8

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First Annual Conference, July 28-31,
1996, Sanford University. Cambridge, MA: MIT Press.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Y u, Jessen, and
Lanza, Guido. 2003. Genetic Programming |V: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie. Cambridge, MA:
The MIT Press.

Langdon, William B. 1998. Genetic Programming and Data Structures. Genetic
Programming + Data Sructures= Automatic Programming! Amsterdam: Kluwer.

Langdon, W. B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Pdli, R., Balakrishnan, K.,
Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J.
F., Burke, E., and Jonoska, N. (editors). 2002. Proceedings of the 2002 Genetic and
Evoluti onary Computation Conference. San Francisco, CA: Morgan Kaufmann.

Langdon, William B. and Poli, Riccardo. 2002. Foundations of Genetic Programming.
Springer-Verlag.

Luke, Sean. 1998. Genetic programming produced competitive soccer softbot teams for
RoboCup97. InKoza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy,
Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick. (editors). Genetic Programming 1998: Proceedings of the Third Annual
Conference, July 22-25, 1998, University of Wisconsin, Madison, Wisconsin. San
Francisco, CA: Morgan Kaufmann. Pages 214-222.

Miller, Julian, Tomassini, Marco, Lanzi, Pier Luca, Ryan, Conor, Tettamarzi, Andrea G. B.,
and Langdon, William B. (editors). 2001. Genetic Programming: 4" European
Conference, EuroGP 2001, Lake Como, Italy, April 2001 Proceedings. Berlin: Springer.

Nordin, Peter. 1997. Evolutionary Program | nduction of Binary Machine Code and Its
Application. Munster, Germany: Krehl Verlag.

Poli, R. and Langdon, W.B. 1997. A new schematheory for genetic programming with one-
point crossover and point mutation. InKoza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 278-285, Stanford University, CA, USA. Morgan
Kaufmann.

Poli, R. and Langdon, W.B. 1998. Schematheory for genetic programming with one-point
crassover and point mutation. Evolutionary Computation, 6(3):231-252.

Poali, R. and McPhee, N. F. 2001. Exact schema theorems for GP with one-point and standard
crossover operating on linear structures and their application to the study of the evolution
of size. InMiller, J. F., Tomassini, M., Lanzi, P. L., Ryan, C., Tettamanzi, A. G. B., and
Langdon, W. B., editors, Genetic Programming, Proceedings of EuroGP'2001, volume
2038 of LNCS pages 126-142, Lake Como, Italy. Springer-Verlag.

Poli, R. and McPhee, N. F. 2003a.General schematheory for genetic programming with
subtree-swapping crossover: Part 1. Evolutionary Computation, 11(1):53-66.

Poli, R. and McPhee, N. F. 2003b.General schematheory for genetic programming with
subtree-swapping crossover: Part I1. Evolutionary Computation, 11(2)..

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop, EuroGP’ 99. Proceedings. Lecture Notesin
Computer Science. Volume 1598. Berlin, Germany: Springer-Verlag.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin, Peter, and
Fogarty, Terence C. 2000. Genetic Programming: European Conference, EuroGP 2000,
Edinburgh, Scotland, UK, April 2000, Proceedings. L ecture Notes in Computer Science.
Volume 1802. Berlin, Germany: Springer-Verlag.

Chapter 8

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming.
Amsterdam: Kluwer Academic Publishers.

Samuel, Arthur L. 1983. Al: Where it has been and where it is going. Proceedings of the
Eighth International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan
Kaufmann. Pages 1152-1157.

Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1998. Genetic programming for
quantum computers. In Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., 1ba,
Hitoshi, and Riolo, Rick. (editors). Genetic Programming 1998: Proceedings of the Third
Annual Conference. San Francisco, CA: Morgan Kauf mann. Pages 365—-373.

Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1999. Quantum computing
applications of genetic programming. In Spector, Lee, Langdon, William B., O'Reilly,
Una-May, and Angeline, Peter (editors). Advancesin Genetic Programming 3. Cambridge,
MA: The MIT Press. Pages 135-160.

Spector, Lee, Barnum, Howard, Bernstein, Herbert J., and Swamy, N. 1999. Finding a better-
than-classical quantum AND/OR algorithm using genetic programming. In |EEE.
Proceedings of 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press.
Pages 2239-2246.

Spector, Lee, and Bernstein, Herbert J. 2002. Communication capecities of some quantum
gates, discovered in part through genetic programming. In Proceedings of the Sxth
International Conference on Quantum Communication, Measurement, and Computing.
Paramus, NJ: Rinton Press.

Spector, Lee, Goodman, E., Wu, A., Langdon, William B., Voigt, H. -M., Gen, M., Sen, S,,
Dorigo, Marco, Pezeshk, S., Garzon, Max, and Burke, E. (editors). 2001. Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO-2001. San Francisco,
CA: Morgan Kaufmann.

Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter (editors). 1999.
Advancesin Genetic Programming 3. Cambridge, MA: The MIT Press.

Stephens, C. R. and Waelbroeck, H. 1997. Effective degrees of freedom in genetic algorithms
and the block hypothesis. In Back, Thomas (editor). 1997. Genetic Algorithms:
Proceedings of the Seventh I nternational Conference. San Francisco, CA: Morgan
Kaufmann. Pages 34—40.

Stephens, C. R. and Waelbroeck, H. 1999. Schemata evolution and building blocks.
Evolutionary Computation, 7(2):109-124.

Turing, Alan M. 1948. Intelligent machinery. Reprinted in Ince, D. C. (editor). 1992.
Mechanical Intelligence: Collected Works of A. M. Turing. Amsterdam: North Holland.
Pages 107-127. Also reprinted in Meltzer, B. and Michie, D. (editors). 1969. Machine
Intelligence 5. Edinburgh: Edinburgh University Press.

Turing, Alan M. 1950. Computing machinery and intelligence. Mind. 59(236)433-460.
Reprinted inInce, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of A. M.
Turing. Amsterdam: North Holland. Pages 133-160.

Whitley, L. D. 1994. A Genetic Algorithm Tutorial. Satistics and Computing, 4:65-85.

Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, lan, and Beyer,
Hans-Georg (editors). 2000. GECCO-2000: Proceedings of the Genetic and Evolutionary
Computation Conference, July 10-12, 2000, Las Vegas, Nevada. San Francisco: Morgan
Kaufmann.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based
Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

